Investigating genetic events in the progression of ductal carcinoma in situ

Sanaz (Sunny) Jansen PhD Mouse Cancer Genetics Program National Cancer Institute

Outline

- Introduction to ductal carcinoma *in situ* (DCIS)
- Modeling DCIS progression in mice
- Techniques for noninvasively tracking preinvasive cancer progression in mice
- Summary

Genes and pathways in progression of ductal carcinoma *in situ* (DCIS)

Grade: low, intermediate, high nuclear grade Growth pattern: solid, papillary, micropapillary, cribriform, comedo Necrosis: prominent in comedo, focal in others (if present) Differentiation: well, moderately or poorly differentiated

Molecular subtype: luminal A, luminal B, HER2, basal

Telomere crisis model of DCIS progression

- Implications:
 - DCIS and IDC are genetically similar

Jansen SA 2015

Cancer stem cell model of DCIS progression

Fig. 3 The precancer stem cell model of DCIS progression. DCIS lesions arise as a result of tumorigenic events (e.g., oncogene activation, loss of tumor suppressor) occurring initially in a precancer stem cell. The molecular and biological properties of the ensuing DCIS

lesion including its potential for progressing to invasive disease are pre-encoded within the initial target cell. In this way, the bulk of malignant transformation has occurred by the DCIS stage

Breast cancers evolve along genetic pathways defined at or before DCIS stage

Jansen SA 2015

DCIS is a disease revealed by imaging

 Because of early detection, DCIS comprises 25-30% of all newly diagnosed breast cancers

DCIS has *inter*lesion heterogeneity

• Subtypes based on growth pattern

DCIS has intralesion heterogeneity

Allred et al Clin Can Res 2008

Finding biomarkers for DCIS progression is critical

NIH State-of-the-Science Conference Statement on Diagnosis and Management of Ductal Carcinoma In Situ (DCIS)

"The primary question for future research must focus on the accurate identification of patient subsets diagnosed with DCIS, including those persons who may be managed with less therapeutic intervention."

"#14: Are there definable properties of a non-malignant (in situ) lesion that predict the likelihood of progression to invasive or metastatic disease?"

But biomarkers for progression remain elusive

Biology of DCIS and Progression to Invasive Disease

Molecular markers	Functions	Molecular signatures correlating with increased risk of recurrence
ER, PR	Steroid receptors	ER-
HER2	Regulates proliferation and apoptosis	HER2+ ER-/HER2+ ER-/HER2 +/Ki-67+
p53	Regulates cell-cycle, apoptosis, and genomic stability; p53 is an important tumor suppressor	p53+
Rb/p16 pathway	Regulates cell-cycle; Rb is an important tumor suppressor	p16+
Ki-67	Proliferation marker	Ki-67+ COX-2+
COX-2	Enzyme for prostaglandin synthesis; expressed during inflammatory response	p16+/COX-2+/Ki-67+ (DCIS recurrence) p16+/COX-2+/Ki-67+ (invasive recurrence)
Akt/PTEN pathway	Regulates proliferation, survival and motility; PTEN is an important tumor suppressor	
BRCA1/2	DNA damage repair	
c-myc	Transcription factor that can activate proliferation; c-myc is a proto-oncogene	
VEGF, vascular patterns	Angiogenesis and vascular markers	
Cyclin A, cyclin E, p21, p27	Cell-cycle regulators	p21+
Bcl-2, Bax, Survivin	Apoptosis regulators	Bcl-2– Survivin+

Table 1 Summary of the molecular markers used to characterize DCIS

Included are the molecular signatures that have been shown to correlate with an increased risk of subsequent recurrence in some reports

Jansen SA 2012

But biomarkers for progression remain elusive

Biology of DCIS and Progression to Invasive Disease

Table	1	Summary	of	the	molecular	markers	used	to	characterize	DCIS
-------	---	---------	----	-----	-----------	---------	------	----	--------------	------

Molecular markers	Functions	Molecular signatures correlating with increased risk of recurrence		
ER, PR	Steroid receptors	ER-		
HER2	Regulates proliferation and apoptosis	HER2+ ER-/HER2+ ER-/HER2 +/Ki-67+		
p53	Regulates cell-cycle, apoptosis, and genomic stability; p53 is an important tumor suppressor	p53+		
Rb 🛛	Regulates cell-cycle; Rb is an important tumor suppressor	p16+		
K1-0/	Proliferation marker	Ki-67+ COX-2+		
COX-2	Enzyme for prostaglandin synthesis; expressed during inflammatory response	p16+/COX-2-/Ki-67+ (DCIS recurrence) p16+/COX-2+/Ki-67+ (invasive recurrence)		
PTEN ^y	Regulates proliferation, survival and motility; PTEN is an important tumor suppressor			
BRCA1	DNA damage repair			
BRCAI	Transcription factor that can activate proliferation; c-myc is a proto-oncogene			
VEGF, vascular patterns	Angiogenesis and vascular markers			
Cyclin A, cyclin E, p21, p27	Cell-cycle regulators	p21+		
Bcl-2, Bax, Survivin	Apoptosis regulators	Bcl-2– Survivin+		

Included are the molecular signatures that have been shown to correlate with an increased risk of subsequent recurrence in some reports

Jansen SA 2012

These tumor suppressor pathways are key in invasive breast cancer

- * Differences by TP53 mutation (P<0.0001)
- + Differences by luminal A subtype vs others (P<0.0001)

c RB pathway (506 tumours with mRNA/mutation data)

TCGA Nature 2012

More

Normal-like

These tumor suppressor pathways are key in invasive breast cancer

c RB pathway (506 tumours with mRNA/mutation data)

* Differences by TP53 mutation (P<0.0001)

+ Differences by luminal A subtype vs others (P<0.0001)

TCGA Nature 2012

Accumulation of p53 correlates with increased heterogeneity

Role of p53 in DCIS heterogeneity and progression?

Allred et al Clin Can Res 2008

Increased recurrences in Rb and PTEN deficient DCIS

 PTEN deficient
 PTEN proficient

Invasive breast cancer recurrences

Role of PTEN and Rb in DCIS progression?

Knudsen et al JNCI 2012

Decreased incidence of DCIS in BRCA1 mutation carriers

Screening trial, Mammo+MRI	No. of tumors in BRCA MC	No. tumors that are DCIS			
Warner et al, 2011	9	0/9			
Sardanelli et al, 2010	21	2/10			
Rjinsburger et al, 2010	21	2/21			
Gilbert et al, 2009	15	0/15			
Shah et al, 2009	11	2/11			
Kaas et al, 2008	39	3/39			
Schrading et al, 2008	23	0/14			
Total	139	9/139 (6%)			
Role of BRCA1 on DCIS imaging properties					
and progression?					

Jansen SA Sem. MR, CT, US 2011

Outline

- Introduction
- Modeling DCIS progression in mice
- Techniques for noninvasively tracking preinvasive cancer progression in mice
- Summary

Modeling DCIS progression in mice Xenograft vs. GEM models of DCIS

Intraductal xenograft models of DCIS

Behbod et al 2009, Valdez et al 2011

Modeling DCIS progression in mice Genetic transformation may not be linear

 Bulk of genetic transformation has already occurred by DCIS stage (Ma et al PNAS 2003, Chin et al Nature Genetics 2004)

Modeling DCIS progression in mice Keratin promoters

Modeling DCIS progression in mice Keratin promoters

Pb-Cre

WAP-Cre

Modeling DCIS progression in mice Keratin promoters: Rationale

• Evidence suggesting that these models can initiate mammary carcinomas

K19-T121tg/+; Pb Cre tg/+

K18-T121tg/+; B-actin Cre tg/+

But these models have weak penetrance and long latency

Tumors have luminal characteristics

MMTV promoter

MMTV promoter

WAP-Cre

MMTV Promoter

Kumar et al PLOS Genetics 2012

Modeling DCIS progression in mice Focal induction with lenti-Cre

Modeling DCIS progression in mice Focal induction with lenti-Cre

Rosa-YFP MEFs treated with lenti-Cre at 200 MOI

Outline

- Introduction
- Modeling DCIS progression in mice
- Techniques for noninvasively tracking preinvasive cancer progression in mice
- Summary

C3(1) Tag mice

Movie

C3(1) Tag mice

Movie

C3(1) Tag mice

Accurate imaging methods to follow preinvasive cancer progression

	Number of DCIS	Sensitivity of MRI	Sensitivity of MRI- directed ultrasound	
All inguinal glands	60	88% (53/60)	72% (38/53)	
Posterior inguinal glands	33	94% (31/33)	97% (30/31)	
Anterior inguinal glands	27	82% (22/27)	36%(8/22)	

Jansen et al submitted

Rapid whole body MR screening for preinvasive cancer

Mouse Mammary collection on The Cancer
Imaging Archive

https://wiki.cancerimagingarchive.net/display/Public/Mouse-Mammary

Movie

MRI can be used to follow progression of DCIS in mice

• Classify as progressing, regressing, indolent

Jansen et al 2009

Other imaging techniques for DCIS

Outline

- Introduction
- Modeling DCIS progression in mice
- Techniques for noninvasively tracking preinvasive cancer progression in mice
- Summary

Summary

- Genetic events in progression of DCIS are not well understood
- We have characterized mouse models to study genetics of DCIS progression and developed noninvasive imaging techniques for interogating these models

Acknowledgements

<u>TVD Lab</u>

Terry Van Dyke Yurong Song Amit Adhikari Zhenye Yang Nailing Zhang Yaroslava Ruzankina

Lucy Lu

Norene O'Sullivan Terry Sullivan Debbie Gilbert Linda Cleveland Sophie Wang

<u>LCDS</u>

Esta Sterneck Glenn Summers

<u>UMass</u> Karl Simin

SAIP/SAIC

Joe Kalen Lily Ileva Lisa Riffle

Yuxi Pang Marcelino Bernardo

<u>PHL</u>

Jenn Matta Tammy Beachley Miriam Anver

CAPR Philip Mart

Philip Martin

OMAL Stephen Lockett Alla Brafman

CBIIT/NCIP

Brian Hughes Ed Helton Eliot Siegel Paul Mulhern

<u>LASP</u>

Stephanie Henderson Dan Logsdon

Mentor Committee

Peter Choyke Shyam Sharan Jeff Green Paul Dayton Glenn Merlino

MCGP CGS Fellows Program DOD Postdoc Fellowship