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Rationale and Objectives. Integral to the mission of the National Institutes of Health—sponsored Lung Imaging Database
Consortium is the accurate definition of the spatial location of pulmonary nodules. Because the majority of small lung
nodules are not resected, a reference standard from histopathology is generally unavailable. Thus assessing the source of
variability in defining the spatial location of lung nodules by expert radiologists using different software tools as an alter-
native form of truth is necessary.

Materials and Methods. The relative differences in performance of six radiologists each applying three annotation meth-
ods to the task of defining the spatial extent of 23 different lung nodules were evaluated. The variability of radiologists’
spatial definitions for a nodule was measured using both volumes and probability maps (p-map). Results were analyzed
using a linear mixed-effects model that included nested random effects.

Results. Across the combination of all nodules, volume and p-map model parameters were found to be significant at P <
.05 for all methods, all radiologists, and all second-order interactions except one. The radiologist and methods variables
accounted for 15% and 3.5% of the total p-map variance, respectively, and 40.4% and 31.1% of the total volume vari-
ance, respectively.

Conclusion. Radiologists represent the major source of variance as compared with drawing tools independent of drawing
metric used. Although the random noise component is larger for the p-map analysis than for volume estimation, the p-map
analysis appears to have more power to detect differences in radiologist-method combinations. The standard deviation of
the volume measurement task appears to be proportional to nodule volume.
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EVALUATION OF LUNG MDCT NODULE ANNOTATION

Lung cancer remains the most common cause of cancer
death in the Western world, in both men and women.
Only 15% of cases have potentially curable disease when
they clinically present, with the mean survival being be-
tween 11 and 13 months after diagnosis in the total lung
cancer population. Although it is a largely preventable
disease, public health measures to eradicate the over-
whelming cause, namely cigarette smoking, have failed,
even though the association between tobacco and lung
cancer was clearly understood at least since 1964 (1).
Many other epithelial based cancers have been increas-
ingly controlled by early detection through screening—
such as cancer of the cervix (2) and of the skin (3)—in
at-risk groups. Significant evaluation of screening for lung
cancer occurred in the late 1970s using the acceptable
modalities of chest radiographs, with or without sputum
cytology. Chest radiographs applied through community
screening had previously been very successful in the con-
trol of tuberculosis. These studies, funded largely through
the National Institutes of Health (NIH), demonstrated that
early detection of lung cancer was possible through the
chest x-ray, but failed to show benefit in terms of im-
proved patient survival (4). These results were counter
intuitive; however, one biological explanation was that by
the time the lung tumors were detected by chest x-ray,
they were already of a size, generally 1 cm or greater in
diameter, where metastatic spread had already occurred.
With the introduction of thoracic multirow detector
computerized x-ray tomography (MDCT), and the exquis-
ite detail of the lung contained in these images, the notion
of screening for lung cancer with this modality was de-
veloped by several groups, with early uncontrolled clini-
cal studies indicating that detection of small lung cancers
was indeed possible (5-12). Under the auspices of the
NIH, a large multicenter study is currently under way,
evaluating whether early detection using MDCT translates
into improved patient survival (12). Several important
questions, however, remain unanswered, in terms of using
MDCT as a screening test in this disease. Human ob-
server fallibility in lung nodule detection, the three-di-
mensional definition of a lung nodule, the definition of a
clinically important lung nodule, and measures of lung
nodule growth using MDCT, are some issues that need
understanding and clarification, so that there are common
standards that can be clearly articulated and agreed on for
implementation into research and clinical practice. Many
of these questions can best be answered using a syner-
gism between the trained human observer and image anal-
ysis computer algorithms. Such a practice paradigm uses

the rapid calculating power of modern computers appro-
priately, evaluating every pixel or voxel within the image
dataset together with the experience and training of the
human observer.

In 2001, the NIH Cancer Imaging Program funded five
institutions to participate in the Lung Image Database
Consortium (LIDC) using a U01 mechanism for the pur-
poses of generating a thoracic MDCT database that could
be used to develop and compare the relative performance
of different computer-aided detection/diagnosis algorithms
(13-15) in the evaluation of lung nodules. To best serve
the algorithm development communities both in industry
and in academia, the database is enriched by expert de-
scriptions of nodule spatial characteristics. After consider-
able discussion regarding methods to both quantify and
define the spatial location of nodules in the MDCT data-
sets without forcing consensus, the LIDC Executive Com-
mittee decided to provide a complete three-dimensional
description of nodule boundaries in its resulting database.
To select methods for doing so, the LIDC examined the
effect of both drawing methods and radiologists on spatial
definition. Others have published tests of volume analysis
across radiologists and methods, but to our knowledge
this is the first use of nodule probability maps (p-maps) to
define expert-derived spatial locations (16-20).

MATERIALS AND METHODS

The annotations of the radiologists were evaluated in
two generations of drawing training sessions before the
final drawing experiment was performed. In the initial
session, example slices of several nodules were sent to
the participating radiologist at each of the five LIDC in-
stitutions in Microsoft PowerPoint (Redmond, WA)
slides. Using PowerPoint, each radiologist was requested
to draw the boundaries of the nodule as seen in the slice.
The spectrum of nodules varied from complex and spicu-
lated to simple and round. After examining the large vari-
ability of edges generated across radiologists for the sam-
ple nodule slices from this first session, the second ses-
sion was performed after instructing the radiologists to
include within their outline every voxel they assumed to
be affected by the presence of the nodule. Although this
instruction was issued to try to reduce the variance of the
radiologists’ definitions, some radiologists felt pressured
by the instruction to include voxels they were certain did
not belong to the nodule (eg, were simply the results of
partial volume effects); such voxels were typically located
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on the inferior and superior polar slices of the nodules.
The final revised instructions used in this drawing experi-
ment were built on the principle that the radiologists are
the experts and they were simply to include all voxels
they believed to be part of the nodule.

A spectrum of 23 nodules varying from small and sim-
ple to large and complex, all having known locations
from 16 different patients’ MDCT series was used. All of
the data were obtained from consented patients and dis-
tributed to each of the five sites after de-identification
under institutional review board approval. All of the data-
sets were acquired on MDCT GE LightSpeed 16, Pro 16,
and Ultra (GE Healthcare, Waukesha, WI) scanners. For
all but one of the acquisitions, 1.25-mm thick slices were
reconstructed at 0.625-mm axial intervals using the stan-
dard convolution kernel and body acquisition beam filter
with the following parameter ranges (minimum/average/
maximum): reconstruction diameter = 310/351/380 mm,
kVp = 120kV, tube current = 120/157/160 mA, and ex-
posure time = 0.5 seconds. For the one exception, 5-mm-
thick slices were reconstructed at 2.5-mm intervals in
which the reconstruction diameter was 320 mm and the
tube current was 200 mA. Nodules varied in volume from
20 mm?3 to 18.8 cm? as computed from the average of all
18 radiologist-method contour combinations.

In this drawing experiment, six radiologists, one from
each participating LIDC institution, plus an additional
radiologist at one of the LIDC institutions, annotated each
of the 23 nodules using each of the three software draw-
ing methods to produce a total of 18 annotation sets for
each nodule. All have many years of experience in read-
ing MDCT lung cases; many are participants in major
national lung cancer MDCT screening trials. Because the
task was assessing the variability of nodule boundary def-
inition from reader and drawing method effects, not de-
tection, the nodules were numbered and their scan posi-
tion was identified for each reader. The annotation order
of cases (one case contained a maximum of four nodules)
and methods employed across readers were randomized
across all radiologists.

Among the LIDC institutions, three groups had previ-
ously developed relatively mature workstation-based nod-
ule definition software that could be modified to meet the
requirements of the LIDC—namely the extraction of nod-
ule contour information in a portable format. One method
was entirely manual; the radiologist drew all of the out-
lines of the nodule on all slices using the computer’s
mouse. The drawing task was assisted by being able to
see and outline the nodule in three linked orthogonal
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planes. The other two methods were semiautomatic. The
general goal of the semiautomatic methods was to reduce
the time for the radiologists by defining most of the nod-
ule, while supporting facile user editing where desired. In
one semiautomatic method after the location of the nodule
was defined, the three-dimensional iso-Hounsfield unit
contours of the nodule were precomputed at five different
isocontour levels. The user could view the edges for each
isocontour setting to decide which the user generally pre-
ferred, based on the resulting nodule definition. The algo-
rithm was designed to identify and exclude vascular struc-
tures. In the other semiautomatic method, the user se-
lected a slice through the nodule of interest and manually
drew a line normal to and through the edge of the nodule
into the background. This line was used to define a histo-
gram of HU values along the line, which was expected to
yield a bimodal distribution of voxels in which nodule
voxels would be of one intensity group and background
composing the other group. An initial intensity threshold
value was calculated, which was expected to give the best
separation between nodule and background. This thresh-
old was then applied in a three-dimensional seeded region
growing technique to define the nodule boundary on that
slice and adjacent slices. For nodules in contact with the
chest wall or mediastinum, an additional “wall” tool was
provided to be used before defining the edge profile to
prevent the algorithm from including chest wall or vascu-
lar features in the resulting definition. This tool was used
to define a barrier on all images on which the contiguity
occurred, and through which the algorithm would not pur-
sue edge definitions. In both semiautomatic tools, facile,
mouse-driven editing tools also allowed the user to mod-
ify the algorithm’s generated boundaries. All three meth-
ods supported interpolated magnification, which was inde-
pendently used by each radiologist to best annotate/edit
nodules. After acceptance by the radiologist of the result-
ing edge definition of the nodules in a series, each soft-
ware method reported the resulting edge map of the nod-
ules in an xml text file according to the xml schema
developed by the LIDC for compatible reporting and in-
teroperability of methods. This schema is publicly avail-
able on online at http://troll.rad.med.umich.edu/lidc/
LidcReadMessage.xsd.

Each of the three drawing software tools was installed
at each institution. At each institution, a person was
named and trained by the software methods’ developers
to act as a local expert on the use of each of the drawing
methods. This local methods’ expert was responsible for
the training of the local radiologist. Additional refresher
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training occurred as necessary just before the radiologist
began outlining nodules in this experiment; the local
methods’ expert remained immediately available for the
duration of the drawing experiment to answer any addi-
tional questions that might occur.

All workstations used color LCD displays except one
that used a color CRT. Before the drawing experiment, all
workstation display monitors were gamma-corrected using
the VeriLUM software (IMAGE Smiths, Inc, German-
town, MD). Additionally, the following instructions were
printed and given to each radiologist before they began
the drawing experiment:

1. Nodule boundary marking: All radiologists will
perform nodule contouring using all three of the
boundary marking tools. In delineating the bound-
ary, you must make your best estimate as to what
constitutes nodule versus surrounding nonnodule
structures, taking into account prior knowledge and
experience with MDCT images. The marking is to
be placed on the outer edge of the boundary so that
the entire boundary of the nodule is included within
the margin. A total of 23 nodules will be contoured
using each set of marking tools.

2. Reduce the background lighting to a level just
bright enough to barely read this instruction sheet
taped to the side of your monitor.

3. Initially view each nodule at the same (window/
level) setting for all nodules and methods, specifi-
cally (1500/-500). Please feel free to adjust the
window/level setting to suit your personal prefer-
ence after starting at the initial common value of
1500/-500.

The nodules’ edges derived by a radiologist-method
combination were written to xml text files for analysis
according to a schema definition jointly developed and
approved by the LIDC. The definitions for 23 nodules
found in 16 exam series were collected and analyzed us-
ing software developed in the MATLAB (MathWorks,
Natick, MA) application software environment. First, all
of the nodule xml definitions were read and then sepa-
rated, sorted by nodule number and extrema along cardi-
nal axes were noted. Sorting was not an issue in those
cases that had only one nodule, but in series containing
multiple nodules, the nodules were sorted using the dis-
tance from the centroids of their edge maps as drawn by
the radiologists to their estimated centroid. After sorting
nodules into numbered edge maps, these edge maps were

used to construct binary nodule masks defined as the pix-
els inside the edge maps, which according to the drawing
instructions, exclude the edge map itself.

In addition to computing nodule volume data across
radiologists and methods by summing each radiologist-
method combination’s nodule mask, we also computed
the nodule’s p-map defined such that each voxel’s value
is proportional to the number of radiologist-method com-
bination annotations that enclose it. The p-map is com-
puted by summing across radiologist-method combination
nodule masks and dividing by the finite number of radiol-
ogist-method combinations in the summation to form a
p-map of the nodule. In addition, the p-maps of discrete
values were filtered using a 3 X 3 Gaussian kernel to
smooth the values. Although an undesired side effect of
this filtering process causes correlation between adjacent
p-map values, the desired effect reduces the gross quanti-
zation of the probabilistic data and improves the validity
of the Gaussian assumption required for subsequent statis-
tical tests on the resulting distribution of p-map values.
Finally, the values of the smoothed p-map at loci from
sparsely sampled edge map voxels for each radiologist-
method combination were recorded for each nodule.

The method of comparing p-map values across radiolo-
gist-method combinations is especially sensitive to vari-
ability in location of annotated nodule edges because it
compares the spatial performance of each radiologist-
method combination against the accumulated spatial per-
formance of other combinations and thereby normalizes
for nodule volume as well as high- vs. low-contrast object
effects. For simple nodules with well-defined, high-con-
trast boundaries, the spatial gradient of the resulting
p-map in directions normal to the edge of the nodule is
typically large; for complex nodules or those with signifi-
cant partial volume effects, the gradient of the resulting
p-map is reduced because of the variability of the contrib-
uting spatial definitions.

Figure 1 demonstrates the p-map construction process
more concretely. Nodule 10 was chosen for visualization
of the p-map formulation process in Fig 1 because it po-
tentially is the most complex nodule of the 23 nodules
involved in the test and the corresponding details of the
resulting p-map are easily visualized. Figure 1a shows a
mid-slice view of one of the nodules actually used in the
drawing experiment. Figures 1b and 1c show two differ-
ent annotations generated by two different radiologist-
method combinations. Figure 1d results when the nodule
masks (ie, the pixels inside the edge maps) from all com-
binations are summed and divided by n, the total number
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c.

d

computed by summing all radiologist-method mask combinations.

of contributing radiologist-method combinations. The n
for a nodule is incremented by one if a radiologist-
method combination annotates any number of slices asso-
ciated with the nodule including one; for this experiment
n =6 X 3 = 18 typically.

Much like jack-knifing, the edge to be tested should
not contribute to the combined p-map because doing so
increases the correlation between the edge under test with
the p-map values and thus decreases the sensitivity of the
test. A radiologist-method combination was excluded
from the combined p-map by subtracting it from the com-
bined sum of edge masks, normalizing by the denomina-
tor of n — 1, spatial filtering, and transforming the result-
ing sampled p-map values. The same process was applied
to all slices containing any nodule annotation.
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Figure 1. (a) Nodule 10, slice 20. (b) Radiologist 6, method 2 edge map. (c) Radiologist 4, method 3 edge map. (d) p-map

The sparse sampling of the edge map for each combi-
nation of radiologist-method occurred at random multiples
of 10 voxels along edge maps on each MDCT slice to
assure decorrelation of the previously smoothed p-map
samples (Fig 2). Sampling too sparsely should be avoided
because it reduces the number of samples for each nodule
and thus reduces the power of the statistical test for sig-
nificant differences. As each sampled p-map value was
appended to the p-map vector to construct the dependent
variable used in the statistical test, the corresponding
method and radiologist vectors (ie, the independent vari-
ables) were simultaneously created. Entries for the radiol-
ogists and methods vectors consisted of values 1-6 and
1-3, respectively, corresponding to the radiologist-method
combination that generated the particular p-map sample.
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Figure 2. Dashed line shows contour from one radiologist-
method combination. Dots depict loci of possible samples from
the underlying p-map constructed from the sum of other radiolo-
gist-method combinations.
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Figure 3. Normplot of all transformed, smoothed, sampled
p-map values for all radiologist-method combinations across all
nodules.

Last, because probability values tend not to be Gaussian
distributed, the sampled p-map values were transformed
to obtain a nearly Gaussian distribution as visualized by
the normal probability plot seen in Fig 3. The typical
transformation, and that applied here, to normalize proba-
bility values is

y = arcsin(sqrt(p))/(w/2)

where y is the new transformed variable plotted in Fig 3
and that used in the statistical test and p is the originally

sampled, smoothed p-map value. A Gaussian distributed
variable would yield a straight line in the normplot of
Fig 3. The null hypothesis assumes that the variability of
the p-map values sampled under the edge maps of each
radiologist-method combination is unbiased (ie, randomly
unrelated to radiologist or method).

p-map Model

Several linear mixed effect models were fitted to the
p-map data. The /me function in the R (21) package nlme
(22) was used to perform the statistical analysis using the
method of maximum likelihood. Model selection was per-
formed using the Bayesian information criteria (23). The
final model included main radiologist and method effects
as well as interactions between radiologists and methods.
Random effects included a random nodule effect, a ran-
dom radiologist effect nested within nodule, and a ran-
dom method effect nested with radiologist and nodule.
These random effects help account for the correlation be-
tween p-map values that were constructed for each nodule
by a single radiologist under each of the three methods.

The use of the linear mixed-effects model, specifically
Ime as described previously, is preferable to typical analy-
sis of variance (ANOVA) methods, because use of the
typical multiple comparison methods and corrections for
multiple observations that follow ANOVA are not neces-
sary; instead by using Ime, individual parameter estimates
are computed directly from the data. It is worth noting
that the general trends in the results computed by /me for
our data sets are similar to those computed by ANOVA,
but the individual parameter values are biased in ANOVA
because of the lack of ability to handle nested, random
effects.

For the Ime, let Y"* denote the hth transformed p-map
value from radiologist i, method j, nodule k. The final
model is

_ R M RM
Yhijk =ata+p+ bi(k) + Bj + Cjan T Bij + &piji

where « is the model intercept, 8% is the main radiologist
effect, BJM is the main method effect, BSM is the interac-
tion term between radiologist and method, «; is the ran-
dom nodule effect, b;y, is the random radiologist effect
within nodule, ¢;, is the random method effect within
radiologist and nodule, and & is the model error. Each
random effect is assumed to have a mean zero normal
distribution, as is the error term. The random effects are
also assumed to be uncorrelated with each other. For ex-
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Table 1
Ime Results of Parameter Estimates for p-map Values
Parameter Estimate Standard Error DF t Value P Value
@ 0.1518 0.0195 9469 7.7682 <.0001
g 0.3117 0.0289 110 10.7798 <.0001
B/;* 0.0822 0.0278 110 2.9614 .0038
35 0.1943 0.0283 110 6.8644 <.0001
5” 0.2679 0.0289 110 9.2645 <.0001
6’? 0.1833 0.0286 110 6.4173 <.0001
’;’ 0.1892 0.0260 261 7.2720 <.0001
’3"’ 0.1067 0.0258 261 4.1364 <.0001
ng/’ —0.2294 0.0381 261 —6.0246 <.0001
B?Q/’ —-0.1105 0.0367 261 —-3.0143 .0028
4’?;” —0.2460 0.0371 261 —6.6351 <.0001
5’?3” —0.1842 0.0381 261 —4.8399 <.0001
gg” —0.0233 0.0387 261 —0.6008 .5485
ZRQ/’ -0.2871 0.0377 261 —7.6056 <.0001
Bg*g/’ —0.1427 0.0363 261 —3.9300 .0001
BZ*Q/’ -0.2012 0.0369 261 —5.4485 <.0001
5”5” —-0.1710 0.0382 261 —4.4750 <.0001
M —0.1493 0.0373 261 —4.0039 .0001

ample, the correlation between «; and -, k # k*, equals
zero as well as between by, and ¢, for all i,j,k. Parame-
ter estimates and P values are given in Table 1.

Volume Model

Several linear mixed-effect models were fitted to the
natural log-transformed volume data. The log transform
of the nodule volume data was required to yield Gaussian
Pearson residuals. The Ime function in the R package
nlme was used to perform the statistical analysis using the
method of maximum likelihood. Model selection was per-
formed using the Bayesian information criteria. The final
model included main radiologist and method effects as
well as interactions between radiologists and methods.
Random effects included a random nodule effect and a
random radiologist effect nested within nodule. The ran-
dom effects help account for the correlation induced be-
tween volumes of a single nodule constructed by a radiol-
ogist under the three different methods.

Let Y denote the log volume from radiologist i,
method j, nodule k. The final model is

Yiu=a+a+ B +bg+ B+ i+ B+ e

where « is the model intercept, 8% is the main radiologist
effect, B,M is the main method effect, Bﬁ.M is the interac-
tion term between radiologist and method, «; is the ran-
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dom nodule effect, by, is the random radiologist effect
with nodule, c;, is the random method effect within radi-
ologist, and nodule and e is the model error. Each ran-
dom effect is assumed to have a mean zero normal distri-
bution, as is the error term. The random effects are also
assumed to be uncorrelated with each other and with the
model error. For example, the correlation between oy and
ag+ k # k*, equals zero as well as between by, and ¢
for all i,j,k. Parameter estimates and P values are tabu-
lated in Table 2.

RESULTS

For the parameter estimates of the nodule p-map
model in Table 1, note that only one term (ie, the interac-
tion term between radiologist 6 and method 2) is not sig-
nificantly different from zero at P < .05. Further analysis
of the sum of squares attributed to each variable category
leads to the following summary of the model’s resolution
of signal and noise shown in Table 3 across all nodules.
Also note from Table 3 that the radiologists’ term ac-
counts for four times the variance compared with that of
the method term, and that random error accounts for 60%
of the total variance.

Additionally the p-map /me results were used to com-
pute individual estimates of each of the radiologist-
method combination performances as shown in Fig 4.
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Table 2
Ime Results of Parameter Estimates for Nodule Volumes
Parameter Estimate Standard Error DF t Value P Value
@ 6.7853 0.3608 264 18.8038 <0.0001
2’? —1.0613 0.1257 110 —8.4440 <.0001
B§ —0.2529 0.1257 110 —-2.0123 .0466
64’? —0.6922 0.1257 110 —5.5076 <.0001
5” —1.0383 0.1257 110 —8.2614 <.0001
6’? —0.7654 0.1257 110 —6.0895 <.0001
’g’ —0.6244 0.1104 264 —5.6542 <.0001
’3"’ —0.3459 0.1104 264 —-3.1324 .0019
ng/’ 0.7765 0.1562 264 4.9724 <.0001
BSRQ/’ 0.3629 0.1562 264 2.3241 .0209
4’?;"’ 0.8443 0.1562 264 5.4065 <.0001
5’?3” 0.7147 0.1562 264 45763 <.0001
gg” 0.0150 0.1562 264 0.0963 .9234
ZRQ/’ 0.9527 0.1562 264 6.1004 <.0001
Bg*g/’ 0.4866 0.1562 264 3.1162 .0020
B?Q/’ 0.7104 0.1562 264 4.5491 <.0001
5”5"’ 0.5997 0.1562 264 3.8405 .0002
gg” 0.6857 0.1562 264 4.3907 <.0001
Table 3

Summary of Ime p-map Model’s Sum of Squares for Each of
the Modeled Categories

p-map Model Sum of Squares % Variance Explained
Intercept 83.633 20.69
Radiologist 60.746 15.03
Method 13.927 3.45
Interaction 2.65 0.66
Error 243.234 60.18
Total 404.19

Typically, results for data collected by an experiment
such as this would be presented only as a volumetric nod-
ule analysis. Because characterization of nodules often
depends on boundary descriptions, we present both a vol-
ume analysis, which follows, and a p-map analysis, al-
ready demonstrated, that compares the individual local-
ized radiologist-method tracing positions. Clearly, because
p-maps, as well as their transform used here, have values
approaching unity near the center of the nodule and ap-
proaching zero peripherally, we should expect to see neg-
ative correlations between volume data and p-map data.
More specifically, radiologist-method combinations that
tend to have higher p-map values are drawn more cen-
trally and thus tend to yield smaller volume estimates.

For the parameter estimates of the nodule volume
model, note that only one term (ie, the interaction term
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Figure 4. Radiologist-method combinations for the transformed,
low-pass filtered, p-map data (means and 99% confidence
regions are indicated).

between radiologist 6 and method 2 and the same as seen
in the p-map results) is not significant at P < .05. Further
analysis of the sum of squares attributed to each variable
category leads to the following summary of the model’s
resolution of signal and noise shown in Table 4 across all
nodules. Note that for the volume model, the resulting
random error is only 11% of the total, and that the vari-
ances explained by radiologist and method differ by a
factor of 130%, smaller than the 400% obtained from the
p-map results.
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Table 4
Summary of Ime Volume Model’s Sum of Squares for Each of
the Modeled Categories

Volume Model Sum of Squares % Variance Explained

Intercept 41.51 13.26
Radiologist 126.491 40.42
Method 97.218 31.06
Interaction 97.218 3.95
Error 35.409 11.31
Total 312.976
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Figure 5. Radiologist-method combinations for negative log-
transformed volume data (means and 99% confidence regions are
indicated).

Similarly the volume /me results were used to compute
individual estimates of each of the radiologist-method
combination performances as shown in Fig 5. The vertical
axis was chosen to be the negative of the log volume to
allow easy visual verification of the strong negative corre-
lation between trends in results of the p-map and volume
models.

By looking across the volumes of all radiologist-
method combinations for all nodules, we observed that
the regression of the log of standard deviation appears to
be linear with the log of the mean and that the random
errors of the regression fit appear to be drawn from the
same distribution independent of mean. Indeed, for this
fit, we obtain the correlation coefficient 2 = .922 at
a < 10~ Figure 6 shows a linear fit of the nodule vol-
umes’ standard deviation vs. mean on a log-log plot.
When plotted on a linear graph, the corresponding line in
Fig 7 is also nearly linear. Such a plot suggests that the
standard deviation (ie, the standard error of the volume

1262

estimates) is approximately a fixed percentage of the vol-
ume where the percentage is represented by the slope of
the curve (ie, approximately 20%). Others have shown
similar linear relationships between mean size and stan-
dard deviation (20).

P-maps

All of the coefficients of the linear mixed-effects
model shown in Table 1 derived from p-map values are
statistically different from zero at P < .05 except one
interaction term. Although the modeled variance for radi-
ologists was more than four times that of methods, by far
the largest variance, almost 60% and four times larger
than that of the radiologists, was due to random error.
The magnitude of the residual error for the p-map analy-
sis accentuates the point that segmentation is fundamen-
tally a noisy task independent of reader and method. Be-
cause this task did not involve repeated measures, it is
impossible to verify whether a single radiologist-method
combination would have similar random variance.

From Fig 4, note that four radiologist-method combi-
nations (ie, 1-2, 4—1, 5-3, and 6-1) all share a role as
seeds for the largest cluster of 13 not significantly differ-
ent radiologist-method combinations at P = .01 as indi-
cated in Table 5; the remaining radiologist-nodule combi-
nations are indeed significantly different from these seeds
at P = 01.

Volumes

All of the coefficients of the linear mixed-effects
model shown in Table 2 derived from volumes are statis-
tically significant at P << .05 except one interaction term.
Although from Fig 5 we see that the trends in the nega-
tive log volume closely mimic those seen in the p-map
results of Fig 4, none of the radiologist-method combina-
tions is significantly different. Additionally, we observe
that the resulting random volume error after modeling is a
much smaller percentage (ie, 11%) of the total variance
than that obtained from the p-map analysis. Recall that
volume estimation is fundamentally an integrative process
where errors in individual edge map positions sum to a
small, if not zero, volume contribution.

From Fig 7 we see that the standard error of nodule
volume estimates across all radiologist-method combina-
tions is approximately 20% of the volume. The presence
of this proportionality is described by a gamma distribu-
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Figure 6. Log-log plot of standard deviation vs. mean for volumes in pixels across all nodules (nod-
ule number is indicated in legend).
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Table 5

X’s Mark the Largest p-map Cluster of 13 Not Significantly
Different Radiologist-Method Combinations at P = .01 (Gray
Cells Represent Radiologist’s Method of Choice)

Radiologist
Methods 1 2 3 4 5 6
1 X X X
2 X X X X X
3 X X X X X

tion. To put this into perspective, note that the 95% confi-
dence region extends over the huge range from 64% to
143% of the mean nodule volume. Because variances add,
using manual or semiautomatic segmentation to detect the
volume change of a nodule from the difference of two
segmented interval examinations will on average have an
approximate maximum standard error of 0.20 \/2 = 0.28,
or approximately 28% of the nodule’s (mean) volume.
Hence we derive that the measured nodule volume would
have to increase/decrease by more than 55% of the nod-
ule’s volume to have at least 95% confidence that the
measured difference represents a real volumetric change
instead of random measurement noise. Because these data
were accumulated across methods and radiologists, and
typically volume change analysis would be performed
using the same radiologist-method combination, these
limits can be thought of as upper bounds on lesion vol-
ume change estimation error. Even so, Fig 7 and the de-
rived upper bounds have direct implications for the Na-
tional Cancer Institute—sponsored RIDER project, where
the effort is to construct a reference image database to
evaluate the response (RIDER) of lung nodules to ther-
apy. Clearly identifying a low noise method of estimating
nodule volume change is important. Thus the use of data-
sets containing real nodules that remain stable between
interval examinations is vitally important in evaluating the
noise of nodule volume change assessment methods.

Comparison of p-map and Volumetric Methods
From observation of Fig 4 and 5 and Tables 2 and 4,
we conclude that although the analysis of p-map results in

a larger fractional modeling error, clearly the statistical
power of the p-map analysis is greater than that of the
volumetric analysis, which results in larger fractional con-
fidence intervals to the extent that no significant differ-
ences can be seen between radiologist-method combina-
tions. In the more sensitive and specific p-map analysis
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the variance from radiologists vs. methods is large (ie, a
factor of 4 times, whereas in the volume analysis the
variance ratio is only 1.3). We potentially explain the
large difference in the resulting residual error terms be-
tween the two measurement analyses by observing that
the p-map measurement process is sensitive to central-
peripheral position wanderings of the tracings during seg-
mentation, whereas the volume measurement essentially
integrates all of the central-peripheral wanderings and
thus is less noisy and less sensitive to differences. The
increased statistical power of the p-map is a further rea-
son for including these data in the publicly available
LIDC data set.

Additionally, we observe that the largest source of
variation between radiologists and methods in either anal-
ysis rests with the radiologists. Thus even with allowing
radiologists to choose their favorite method of nodule
annotation, only one radiologist’s method of choice lies
slightly outside the cluster of 13 not significantly different
combinations at P = .01, as shown in Table 5. This is an
important observation in that radiologists can choose any
of the three supporting annotation methods tested without
adding much in the way of significant variance to the re-
sulting LIDC database. Finally, we note that the median
outline described from all the radiologist-method combi-
nations appears by visual inspection to be a good segmen-
tation of each of the lesions.
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