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Abstract: 

Purpose: To describe the computed tomography (CT) dataset of the Credence Cartridge Radiomic 

(CCR) phantom we collected at our institution and shared with the research community.   

Acquisition Method: Two hundred and fifty one CT scans of the CCR texture phantom were 

acquired on 8 scanners using various acquisition and reconstruction parameters, namely, slice 

thickness, reconstruction Field of View (FOV), reconstruction kernel, mAs, and Pitch. Multiple 

scanners and vendors were used to assess the inter-scanner and inter-vendor variability of CT 

radiomic features. A systematic scanning approach was followed in order to study the effects of 

varying imaging parameters on the numerical values of the extracted radiomic features.  

Data format and storage location: CCR Phantom image files were stored in DICOM format in 

The Cancer Imaging Archive (TCIA, http://www.cancerimagingarchive.net/). 
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1. INTRODUCTION:  

 

The extraction of quantitative information from medical images, known as radiomics, promises to 

aid cancer detection, diagnosis and prediction of response to treatment [1-3]. However, medical 

images are typically acquired using a number of imaging parameters. Each of these parameters is 

typically manipulated during routine CT imaging to get a desired image quality. These parameters 

may affect the quantitative image information extracted in radiomic studies. Texture phantoms 

provide a stable geometry and material composition to study the robustness of radiomic features 

with respect to various imaging conditions [4].  

 

Recent phantom studies have shown that CT radiomic features are significantly affected by 

imaging parameters [5, 6]. Also, intra- and inter-scanner variability of radiomic features has been 

reported [4]. Previously reported features identified as prognostic or predictive were later found to 

be intrinsically dependent on voxel size [5, 7]. Most second order texture features have been shown 

to be affected by CT image noise texture due to reconstruction kernels [6]. And many radiomic 

features were more pronounced to be affected by thinner CT slices as compared to thicker slices 

[8]. Therefore, comprehensive characterization of radiomic features is possible using texture 

phantoms. 

 

For radiomics analysis, phantom CT scans are typically acquired using combinations of multiple 

imaging parameters. A practical approach to assess how a parameter affects radiomic feature 

values is to perform scans of a phantom varying such parameter while keeping all other parameters 

constant at nominal values. In this way mathematical relationships between radiomic features 

versus the varied parameter might be discerned and correction methods developed to reduce 

feature variability, as previously demonstrated [5, 6]. 

 

To describe the computed tomography (CT) dataset of the Credence Cartridge Radiomic (CCR) 

phantom we collected at our institution and shared with the research community. 
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The purpose of this work is to describe the CT dataset of the CCR phantom acquired on different 

scanners, different vendors and several commonly used imaging parameter combinations. These 

scans were acquired at the Moffitt Cancer Center and are available to other researchers in The 

TCIA website.  

 

2. ACQUISTION  

2.1 Systematic Scanning Approach 

 

The CCR phantom [4] was used for all scans. This phantom is composed of ten different cartridges, 

each having a different material with unique textures to simulate a range of HU values similar to 

that found in the human body. In previous studies, the rubber cartridge was most frequently used 

because it was found to have HU values similar to those of non-small cell lung cancer (NSCLC) 

tumors [4, 9]. 

 

CT scans of the phantom were acquired on 8 CT scanners from three major manufacturers:  

Siemens, Philips and GE Healthcare. Multiple scanners and vendors were employed to assess the 

inter-scanner and inter-vendor variability of CT radiomics. Basic acquisition parameters, namely 

tube current (mAs) and pitch, were varied. For image reconstruction, the parameters varied were 

Field Of View (FOV), slice thickness and reconstruction kernels. 

 

The scanning was performed such that only one parameter under investigation was a variable while 

all other imaging parameters were kept constant at nominal values. This scanning approach 

provided a way to discern relationships between a given parameter and the numerical values of 

extracted radiomic features.  

 

2.2 CCR Phantom Dataset 

 

Overall, 251 CCR phantom scans were acquired. The data were divided into four subcategories; 

each subcategory addressed one ‘variable’ CT parameter. These subcategories were variations in 

voxel size, reconstruction kernel, tube current-exposure time product (mAs), and Pitch. The 

nominal parameter values used for each ‘variable’ parameter are listed in Table 1 through Table 
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4. The variation in voxel size was obtained by changing pixel size (7 FOVs per scanner for 7 

scanners & 5 FOVs for 1 scanner) or by changing slice thickness (3 slice thicknesses per scanner) 

for a total of 8 CT scanners. Therefore, there are total of 162 scans for voxel size variation (Table 

1). The CCR phantom scans for variable kernel settings were acquired on 5 CT scanners (Table 

2). The scans for variable mAs and Pitch were acquired on 4 CT scanners as listed in Table 3 and 

Table 4, respectively. 

 

  

 
Table 1: CCR Phantom scans (total = 162) to evaluate the impact of voxel size on radiomic features. 

   
 
  
 
CT Scanner 

Recon.  
Kernel.     

mAs kVp 
  

Scan 
Type 

Detector  
Configuration 
(mm) 

             
             Voxel size (Variable) 
                                
   by varying                          by varying 
 Slice Thickness                   Reconstruction 
       (mm)                                    FOV  (mm) 

GE  
Discovery STE  

Standard 250 120 Helical Det. Coverage= 40     1.25, 2.5, 3.75 200, 250, 300, 350, 
400, 450, 500 

GE   
Lightspeed 32  

Standard 250 120 Helical Det. Coverage= 20     1.25, 2.5, 3.75 200, 250, 300, 350, 
400, 450, 500 

Philips 
Brilliance 64  

Standard (B) 250 120 Helical 64 x 0.625     1.5, 2.0, 3.0 200, 250, 300, 350, 
400, 450, 500 

Philips  
Big Bore 16  

Standard (B) 250 120 Helical 64 x 0.625     1.5, 2.0, 3.0 200, 250, 300, 350, 
400, 450, 500 

Siemens 
Definition AS  

I31f-2 250 120 Helical 64 x 0.6     1.5, 2.0, 3.0 200, 250, 300, 350, 
400, 450, 500 

Siemens 
Sensation 64  

B31f 250 120 Helical 64 x 0.6     1.5, 2.0, 3.0 200, 250, 300, 350, 
400, 450, 500 

Siemens 
Sensation 40  

B31f 250 120 Helical 40 x 0.6     1.5, 2.0, 3.0 200, 250, 300, 350, 
400, 450, 500 

Siemens 
Sensation 16  

B31f 250 120 Helical 16 x 0.6     1.5, 2.0, 3.0 200, 250, 300, 400, 
500 
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Table 2: CCR Phantom scans (total = 28) to evaluate the impact of reconstruction kernels on radiomic features. 

   
 
  
 
CT Scanner 

Recon. 
FOV     

 
mAs 

 
 kVp 

Scan 
Type 

Slice 
thickness, 
Recon. 
interval 

Detector  
Configuration 
(mm) 

Reconstruction Kernel 
(Variable) 

GE Discovery 
STE  

250 65 120 Helical 1.25 mm, 
Adjacent  

Det. Coverage= 40 Soft, Standard, Detail, Lung, Edge 

Philips 
Brilliance 64  

250 65 120 Helical 1.5 mm, 
Adjacent 

64 x 0.625 Smooth (A), Standard (B), Sharp(C), 
Lung enhanced (L), Y-Sharp (YA) 

Siemens 
Definition AS  

250 65 120 Helical 1.5 mm, 
Adjacent 

64 x 0.6 I26f-2, I30f-2, I40f-2,I44f-2, I50f-2, 
I70f-2 

Siemens 
Sensation 64  

250 65 120 Helical 1.5 mm, 
Adjacent 

64 x 0.6 B10f,B20f, B31f, B50f, B60f, B70f 

Siemens 
Sensation 40  

250 65 120 Helical 1.5 mm, 
Adjacent 

40 x 0.6 B10f,B20f, B31f, B50f, B60f, B70f 

Table 3:  CCR Phantom scans (total = 20) to evaluate the impact of mAs on radiomic features. 

   
 
  
CT Scanner 

Recon. 
FOV 
(mm)   

 
Kernel 

 
   kVp 

Scan 
Type 

Slice 
thickness, 
recons. 
interval 

Detector  
Configuration 
(mm) 

Radiation dose (mAs) 
 (Variable) 

GE  
Discovery STE  

180 Standard 120 Helical 1.25 mm, 
Adjacent  

Det. Coverage= 40 50, 100, 200, 300, 400 

Philips  
Brilliance 64  

180 Standard 
(B) 

120 Helical 1.5 mm, 
Adjacent 

64 x 0.625 50, 100, 200, 300, 400 

Siemens 
Definition AS  

180 I31f-2 120 Helical 1.5 mm, 
Adjacent 

64 x 0.6 50, 100, 200, 300, 400 

Siemens 
Sensation 64  

180 B31f 120 Helical 1.5 mm, 
Adjacent 

64 x 0.6 50, 100, 200, 300, 400 
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3. FILE NAMING FORMAT 

 

All scans were stored at The Cancer Imaging Archive (TCIA) at the National Institute of Health 

(NIH) for long term repository [10, 11]. The scans were exported from GE-PACS in DICOM 

format. Each scan file name was formatted as follows: 

 

Manufacturer_Scanner Model_kVp_mAs_slice thickness_Variable 

 

For scan files, where mAs was the variable the file naming format was:  

 

Manufacturer_Scanner Model_kVp_Slice thickness_mAs  

 

For the variation of the reconstruction kernel using the Siemens Definition AS scanner for 

scanning parameters of 120 kVp, 65 mAs and 1.5 mm slice thickness, file names were formatted 

as:  

 

Siemens_DefinitionAS_120_65_1.5_Kernel  

 

Table 4:  CCR Phantom scans (total = 41) to evaluate the impact of Pitch on radiomic features. 

   
 
 
 CT Scanner 

    
Recon
. FOV 
 (mm) 

 
mAs 

 
   kVp 

Scan 
Type 

Recon.  
Kernel 

Slice 
thickness, 
recon. 
 interval 

Detector  
Configuration 
(mm) 

Pitch  
(Variable) 

Philips 
Brilliance 64  

250 65 120 Helical Standard(B) 1.5 mm, 
Adjacent 

64 x 0.625 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
1.1, 1.2, 1.3 

Siemens 
Definition AS  

250 65 120 Helical I31f-2 1.5 mm, 
Adjacent 

64 x 0.6 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
1.1, 1.2, 1.3, 1.4, 1.5 

Siemens 
Sensation 64  

250 65 120 Helical B31f 1.5 mm, 
Adjacent 

64 x 0.6 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
1.1, 1.2, 1.3, 1.4, 1.5 

Siemens 
Sensation 40 

250 65 120 Helical B31f 1.5 mm, 
Adjacent 

40 x 0.6 0.5, 0.7, 0.8, 0.9, 1.0 
1.1, 1.2, 1.3, 1.4, 1.5 
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In this particular case, the reconstruction kernel was varied from B10 (very soft) to B70 (very 

sharp). The file names for all other cases followed the same naming technique. 

 

The entire dataset is under the name “CC-Radiomics-Phantom-2” on The TCIA website, 

http://www.cancerimagingarchive.net/. The total size of the dataset is 30.5 GB, consisting of 251 

scan files in DICOM format. 

 

4. DISCUSSION 

 

Radiomics considers images as quantitative data and promises to contribute to the development of 

personalized oncology [12]. However, quantitative data extracted from computed tomography 

(CT) images is significantly affected by the variation of imaging parameters and stochastic noise 

[5,13]. There are large variations in the parameters employed currently in CT imaging; therefore, 

it is difficult to determine how these parameter variations affect radiomic feature values. Moreover, 

features values across institutions may also be affected by variations in imaging protocols and 

quality control procedures.  The purpose of this work was to describe CCR phantom dataset, 

acquired at a single institution, to address the issue of variability in CT radiomics due to imaging 

parameters. This dataset was acquired using a systematic scanning approach facilitating variability 

assessments and subsequent corrections of radiomic features. 

 

Texture phantoms provide stable geometries and material compositions useful for investigating 

the robustness of radiomic features before clinical investigations [4, 5]. These texture phantoms 

can be customized to match a range of HU values of different tumor types. For example, the rubber 

cartridge within CCR phantom has HU values similar to non-small cell lung cancer (NSCLC) 

tumors [4]. Another possible approach is the use of homogeneous and heterogeneous 3D-printed 

cylindrical inserts in combination with commonly used imaging quality assurance phantoms [14, 

15].  

 

The phantom dataset is also useful to identify a subset of robust radiomic features as well as to 

develop methods to correct for variability in CT radiomic features [5]. For example, a subset of 

scans was acquired by only varying voxel size while keeping all other parameters constant at 

http://www.cancerimagingarchive.net/
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nominal values. With this approach we were able to identify features that were robust to voxel size 

variations. Additionally, we proposed a normalization method to remove the voxel size 

dependency of several features, even for features that had been previously reported to have 

prognostic power [5]. In another study [6], we acquired scans with systematic variation of 

reconstruction kernels, and found that most texture features were sensitive to reconstruction kernel 

settings. Moreover, we correlated the variability in features to correlated noise texture introduced 

by the reconstruction process [6]. This dataset was also used to investigate the stability of deep 

features across different CT scanners and Field Of Views [16]. The important point is that the 

impact of an individual imaging parameter can be evaluated using the dataset and the approach 

reported in this paper.  

 

The phantom dataset is also useful for comparing the numerical values of radiomic features 

extracted using different algorithms that are currently used in radiomic research [17-19]. It is 

known that feature definitions, and/or the implementation of these definitions, may vary among 

different research groups [20]. In this regard, this phantom dataset provides a useful repository for 

researchers to compare the performance of radiomics algorithms.  
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