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Cancer of the lung and bronchus is the leading fatal malignancy in the United States. Five-year survival is low, but treatment of early 
stage disease considerably improves chances of survival. Advances in multidetector-row computed tomography technology provide 
detection of smaller lung nodules and offer a potentially effective screening tool. The large number of images per exam, however, re­
quires considerable radiologist time for interpretation and is an impediment to clinical throughput. Thus, computer-aided diagnosis 
(CAD) methods are needed to assist radiologists with their decision making. To promote the development of CAD methods, the Na­
tional Cancer Institute formed the Lung Image Database Consortium (LIDC). The LIDC is charged with developing the consensus and 
standards necessary to create an image database of multidetector-row computed tomography lung images as a resource for CAD re­
searchers. To develop such a prospective database, its potential uses must be anticipated. The ultimate applications will influence the 
information that must be included along with the images, the relevant measures of algorithm performance, and the number of required 
images. In this article we outline assessment methodologies and statistical issues as they relate to several potential uses of the LIDC 
database. We review methods for performance assessment and discuss issues of defining “truth” as well as the complications that arise 
when truth information is not available. We also discuss issues about sizing and populating a database. 
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In the United States, cancer of the lung and bronchus is 
the most common fatal malignancy in both men and 
women, accounting for 32% of cancer deaths among men 
and 25% of cancer deaths among women (1). Cancer of 
the lung and bronchus accounts for 31% of cancer deaths 
among men and 25% of cancer deaths among women. 
The overall 5-year survival rate with lung cancer is ap­
proximately 14% (2); however, subjects with early stage 
disease who undergo curative resection have 5-year sur­
vival rates of 40%–70% (3,4). Recently, investigators 
have proposed the use of low-dose computed tomography 
(CT) for lung cancer screening (5–8). Results from these 
studies indicate that screening with CT may enable detec­
tion of lung cancers that are of a smaller size and at an 
earlier stage than those detected by chest radiography and 
current clinical practice. The potential for improved sur­
vival from early detection of non–small cell lung cancer 
is the rationale for lung cancer screening CT. 

Recent advances in multidetector-row CT technology 
allow the rapid acquisition of thin slices through the tho­
rax in a single breath hold. The resulting nearly isotropic 
high-resolution data sets allow the visualization of smaller 
lung nodules, potentially providing even earlier detection 
of disease. This degree of anatomic detail, however, 
comes with the burden of large data volumes (9,10), 
which dramatically increase the number of images for 
radiologist interpretation. Interpretation times for the large 
number of thin-section images would be impractical if CT 
screening for lung cancer were to become routine; thus, 
interest has increased in the development of computer-
aided diagnosis (CAD) schemes to assist in the detection 
of lung nodules imaged on CT. While screening and re­
lated studies have shown that CT is very sensitive for the 
detection of lung nodules, it is not very specific for the 
detection of lung cancers. Hence, there is also significant 
interest in the development of CAD schemes to assist 
with the characterization of detected lung nodules as can­
cerous or noncancerous. 

There are many problems hindering the advancement 
of CAD systems. These include: a lack of standardized 
image sets to compare results of different CAD algo­
rithms; a lack of consensus on the definition of a lung 
nodule; a lack of consensus regarding the definition of a 
positive scan; and a lack of consensus about appropriate 
algorithm assessment methodologies. The National Cancer 
Institute has formed a consortium of institutions to de­
velop the necessary consensus and standards for designing
and constructing an image database resource of multide-

tector-row CT lung images (11). This group, the Lung 
Image Database Consortium (LIDC), seeks to establish 
standard formats and processes to manage lung images 
and related technical and clinical data needed for develop­
ing, training, and evaluating CAD algorithms to detect 
and diagnose lung cancer. The resulting database will be 
made available to interested investigators to promote the 
development and quantitative assessment of such algo­
rithms. In anticipation of the availability of this resource, 
we present a review of methodologic and statistical issues 
relevant to the assessment of computerized algorithms for 
the detection of lung nodules. 

ASSIST 
GOALS OF AN ALGORITHM/COMPUTER-

The main purpose of a CAD system is to assist radiol­
ogists in the medical decision-making process. Giger (12) 
describes CAD as a diagnosis made by a radiologist tak­
ing into consideration the results of a computerized analy­
sis of radiographic images as a second opinion in detect­
ing lesions and making diagnostic decisions. 

There are several stages at which one might want to 
assess a CAD system. The first is sometimes called a pre­
clinical stage, when there is an assessment of the stand­
alone computer algorithm in a laboratory setting in which 
human readers are not in the decision-making loop. The 
next stage is closer to clinical use but is also within a 
controlled laboratory setting (as opposed to a large study 
in the field). At this stage, the performance of unaided 
human clinicians is compared with the performance of the 
clinicians aided by the computer algorithm. Such a con­
trolled laboratory investigation attempts to mimic clinical 
practice; however, it can be subject to the criticism that it 
may not adequately represent the clinical environment. In 
particular, the participants (eg, radiologists), aware that 
they are being studied, may behave differently than they 
would in the field (eg, the clinic). Discussion of the para­
digm of a large clinical study in the field is beyond our 
present scope. 

The controlled laboratory study of the performance of 
clinicians unaided versus aided by the computer has been 
used on several occasions by industry sponsors of imag­
ing adjuncts (13,14) in their submissions to the US Food 
and Drug Administration. In general, this mode may not 
be practical when initially developing computer algo­
rithms because investment of resources in human readers 
may be relatively expensive during the development stage 
compared with that during a more mature stage of the 

technology. Consequently, we assume that assessment of 
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an algorithm without the human in the loop will be of 
particular interest during the earlier stages of develop­
ment. The relative importance of preclinical versus clini­
cal assessment methods for submissions to the US Food 
and Drug Administration in this area is a subject of cur­
rent discussions. 

Based on the LIDC database, algorithms might be de­
veloped for nodule detection, characterization, or segmen­
tation. In this article, we focus on the detection task. Is­
sues relating to characterization and segmentation will be 
discussed in future work. 

Investigators may consider the detection task with or 
without nodule localization. When localization is not of 
primary interest, the goal may simply be to properly iden­
tify individuals in need of follow-up diagnostic scans. In 
such cases, the individual is the primary unit of interest 
and proper identification of every nodule based on the CT 
scan is not of immediate importance. When detection of 
any cancerous nodule without regard to localization is the 
goal, a true positive might be defined as: a scan that ex­
ceeds a threshold for requiring work-up (eg, additional 
scans or more frequent follow-up visits) when the individ­
ual, in fact, has at least one cancerous nodule somewhere 
in the lungs. When detection of any nodule is the goal, a 
true-positive occurs when a positive exam is scored in an 
individual with at least one nodule somewhere in the 
lungs, regardless of malignancy status. A false-positive 
might be defined as a scan classified as requiring work-up 
when in fact no nodules or no cancerous nodules are 
present. (Variations on these definitions are possible, de­
pending on the research goals and the approach to clinical 
follow-up.) This setting contrasts with the scenario when 
both identification and localization of abnormal nodules 
are important. In such cases, definitions of true and false 
positives must consider location and the potential for ob­
serving multiple nodules within an individual. We empha­
size that investigators must clearly state the positives 
sought by their algorithm, because definitions of true- and 
false-positive classifications by a CAD algorithm will de­
pend on the task at hand. 

We consider four-nodule detection tasks: (1) detec­
tion of any nodule in an individual without regard to 
location; (2) detection of a cancerous nodule in an in­
dividual without regard to location; (3) detection of all 
nodules with specific or regional localization of each 
nodule; and (4) detection of all cancerous nodules with 
specific or regional localization. Each of these four de­

tection tasks has very different requirements in terms 

464 
of the information required to develop and test CAD 
algorithms. Specifically, the objective of task 1 is to 
identify only cases with nodules that exceed some 
threshold for work-up (eg, a nodule �5 mm or a nod­
ule displaying growth over time). No information on 
the patient’s actual diagnosis (ie, whether cancer was 
present or not) nor on the actual location of the suspi­
cious nodule is needed. On the other hand, the objec­
tive of task 2 requires additional information from clin­
ical follow-up (from both imaging and nonimaging 
studies such as pathology tests) to determine that the 
individual actually had a cancerous nodule. No infor­
mation on the location (or how many cancerous nod­
ules were actually present) is required. Task 3, while 
not requiring clinical follow-up information, does re­
quire some location-specific information about the 
identified nodules. This information may range from 
the simple identification of the region or quadrant 
where a nodule is observed to a detailed description of 
the boundary (ie, a contour) of each nodule identified 
in three dimensions. Finally, task 4 requires both clini­
cal follow-up and location-specific information to de­
termine not only where nodules are located, but to spe­
cifically identify those that are cancerous. As one can 
imagine, this last task, while providing the most infor­
mation, requires the most substantial data collection 
and will be the most restrictive. A summary of these 
four tasks and their data collection requirements is pro­
vided in Table 1. 

Many observed nodules will not have pathology re­
ports because many will not undergo biopsy or surgical 
resection. This is especially true for individuals with mul­
tiple nodules, where only one of the nodules will undergo 
biopsy or resection. Because the LIDC’s aim is to create 
a database for CAD developers, the goal is to collect as 
many nodules with as complete a description as possible. 
From those studies with nodules, the LIDC will provide a 
detailed description of bounding contours for all identified 
nodules �3 mm in diameter and will provide a less de­
tailed description for nodules �3 mm in diameter (eg, 
only the centroid will be marked). Of the identified nod­
ules, the LIDC will collect pathologic and other follow-up 
data on as many as possible to establish their malignancy 
status. In addition to collecting imaging studies from indi­
viduals with identified nodules, the LIDC will collect 
studies from individuals without nodules. This will allow 
the flexibility for CAD developers to carry out any of the 

above four identified tasks. 
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Table 1 
Summary of Data Collection Requirements 

Task Unit of Comparison 

Positive Scan 

1 Individual X 
2 Individual X 
3 Nodule X 
4 Nodule X 

NOTE. Task 1 is the detection of any nodule in an individual with
in an individual without regard to location; task 3 is the detection o
4 is the detection of all cancerous nodules with specific or regiona

PERFORMANCE METRICS 

Fundamentals.—The output of a clinical laboratory 
diagnostic test is frequently a chemical assay of a biomar­
ker related to the state of health or disease of the subject, 
eg, blood sugar, hematocrit, prostate-specific antigen 
(PSA). In medical imaging and computer-aided diagnosis, 
this output is usually a rating of the likelihood of disease 
as assessed by the human reader (in imaging) or machine 
observer (in computer-aided diagnosis). This output or 
rating may be either continuous or ordinal categorical (ie, 
ranked categories). It is assumed that nodules or subjects 
fall into one of two states (eg, “not diseased” or “dis-
eased,” “normal” or “abnormal,” “no cancer” or “can­
cer”). The output of an algorithm is used to partition units 
(eg, subjects or nodules) into one of these two states, 
based on a threshold along the output scale. The receiver 
(or relative) operating characteristic (ROC) curve is a use­
ful tool for describing the ability to correctly partition the 
population as a function of the threshold setting. This 
curve plots sensitivity (or the true-positive fraction, de­
fined as the percent correct of the actually diseased class) 
versus 1-specificity (or the false-positive fraction, defined 
as the percent incorrect of the actually nondiseased class) 
for all thresholds of the test or reader. The ROC para­
digm allows one to distinguish the intrinsic disease-detec-
tion performance of the test from the level of aggressive­
ness of the reader or observer in setting a threshold for 
action (15–19). ROC analysis can be carried out on data 
that is either quasi-continuous or categorical. A review 
and analysis of their relative merits has recently been 
given by Wagner et al (20). Methods for analyzing cate­
gorical test results have been reviewed by Metz (21). 
Methods for analyzing continuous test results have been 
developed by Metz et al (22), Pepe (23), and Zou and 

Hall (24). Examples of summary measures of ROC per­
Requirements 

Document Nodule Diagnosis Localize Nodule 

X 
X 

X X 

egard to location; task 2 is the detection of a cancerous nodule 
nodules with specific or regional localization of each nodule; task 
lization of each. 

formance include the area under the curve (AUC), the 
partial AUC in a particular region of interest, and sensi­
tivity and specificity at a particular operating point. Sha­
piro (25) provides a more complete review of summary 
indices. 

Relationships between algorithm accuracy and other 
variables, such as clinical data or certain nodule features, 
may be important to understand when developing a com­
puter assist. For example, an algorithm may perform bet­
ter on larger nodules of a certain shape or in more se­
verely diseased lungs. An ROC regression model that 
includes a covariate describing nodule size and shape or 
disease severity would parameterize such dependencies. 
Tosteson and Begg (26) and Toledano and Gatsonis (27) 
develop regression methods when data are ordinal cate­
gorical. The binormal model commonly used in medical 
imaging is a special case of these approaches when the 
only covariate is the subject truth state. Cai and Pepe 
(28), Dodd and Pepe (29,30), and Pepe (31) develop re­
gression models for the ROC curve, the AUC, and the 
partial AUC when test results are continuous. 

A limitation of the basic ROC approach is that it fails 
to directly address issues relating to the problem of local­
ization and those relating to the possibility of multiple 
regions of disease within an individual. A further compli­
cation is that the ROC paradigm requires the true status 
of the subjects (eg, noncancer vs cancer or no nodule vs 
nodule) to be known. Next we review methods for con­
sidering localization and multiple lesions. Methods that 
address the problem of the absence of gold-standard truth 
data will be discussed in the section entitled “The Prob­
lem of Establishing Truth.” 

Location-Specific Analysis.—When localization of one 
or more abnormalities per image is the primary goal, defi­
out r
f all 
nitions of performance metrics are more complicated. As 
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mentioned previously, the conventional ROC paradigm 
ignores location-specific scorekeeping. Defining the ap­
propriate metric requires a clear statement of the purpose 
of the algorithm. For example, a goal might be to cor­
rectly identify all nodules (within a specified margin of 
error). In such a setting, a metric should penalize both 
multiple false-positives and multiple false-negatives, al­
though the importance of multiple false-positives (and 
multiple false-negatives) will vary according to the clini­
cal context. Some current scoring methods do not satisfy 
this scoring requirement. An additional complication is 
that the assumption of independence of a reader’s (or ma­
chine observer’s) multiple ratings, which is fundamental 
to conventional methods of estimation and procedures for 
inference, is not typically satisfied. Algorithm scores of 
multiple nodules within a subject are more likely to be 
positively correlated than to be independent because they 
derive from the same person with the same genes, anat­
omy, and environmental history. Furthermore, all regions 
from the same image were acquired with the same techni­
cal parameters. Such data are referred to as “clustered” 
because multiple observations are grouped within a single 
individual. For valid statistical inference (eg, hypothesis 
testing or confidence intervals), correlations must be con­
sidered. 

A further issue complicating location-specific analysis 
is how to define a true signal event in space. Techniques 
that use bounding boxes, circles, centroids, and percent 
overlap have been proposed. Nishikawa and Yarusso (32) 
observed that accuracy scoring varies considerably de­
pending on whether one uses a bounding box, circle, or 
centroid method for scoring a true-positive. Giger (33) 
observed that ROC curves generated using percent over­
lap criteria depend on the amount of overlap required for 
scoring a true-positive in that approach. 

Location-specific methods have been developed by 
Bunch et al (34), Chakraborty (35), Chakraborty and 
Winter (36), Metz et al (37), Starr et al. (38), and Swens­
son (39,40). Chakraborty (41) provides a review. CAD 
developers commonly use the free-response ROC (or 
FROC) approach (34) or the alternative FROC (AFROC) 
approach (41,42). The models developed for both assume 
independence across multiple findings on the same image, 
a condition that may not hold in general, as addressed 
previously. The ordinate of the FROC curve plots the 
fraction of all actual target (eg, nodule) locations reported 
at each rating or threshold criterion; the abscissa plots the 
corresponding number of nontarget locations reported (ie, 

false-positives), usually scaled as the mean number of 
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false-positive reports per image. The AFROC plots the 
fraction of actual target locations reported against the 
fraction of images with any false-positive at the same 
rating or threshold criterion (a so-called false-positive 
image). Metz (43,44) has critiqued the FROC and 
AFROC paradigms for making independence assumptions 
that may not be met in practice. To address this issue, 
Chakraborty (45) developed a model and method for sim­
ulating FROC rating data that includes intra-image corre­
lations. He compares the power of AFROC analysis and 
ROC analysis within the multiple-reader, multiple-case 
(MRMC) ROC paradigm as formulated by Dorfman et al 
(46) using variance components (ie, case and reader vari­
ability and associated correlations) representative of those 
used by Roe and Metz (47). For a range of intra-image 
correlations and variance structures, he found that the 
power of the AFROC approach substantially surpassed 
that of the ROC approach while maintaining the appropri­
ate rejection rate under the null hypothesis. More re­
cently, he has found that the latter condition (ie, appropri­
ate rejection rate under the null hypothesis) may not hold 
in general and requires further investigation (personal 
communication, Chakraborty, March 2003). 

To accommodate the correlations within an image, 
Chakraborty and Berbaum (48) have suggested a jack­
knife approach to resampling in the same spirit as recent 
work of Rutter (outlined in the next section (49)). This 
approach is termed the “Jackknife AFROC method” 
(JAFROC). Extensive simulations have been conducted 
and on those trials the Jackknife AFROC approach pre­
serves the power advantage of the earlier AFROC method 
while maintaining the appropriate rejection rate (48). 

Chakraborty has addressed a further issue associated 
with location-specific assessment paradigms; namely, the 
fact that as the arbitrary location-specific criterion (size of 
bounding box, percent overlap, etc) is relaxed, the perfor­
mance measurement will improve (50). He proposes a 
more elaborate model for the location-specific problem in 
which the observer’s localization error is an additional 
model parameter to be estimated. Software for imple­
menting this new approach still needs to be developed. 

Region-of-Interest Analysis.—An alternative to the lo-
cation-specific approaches is the region-of-interest (ROI) 
approach proposed by Obuchowski et al (51). These au­
thors propose dividing the image or subject into ROIs 
(eg, four quadrants of an image, or five lobes of the 
lung). The ROI becomes the unit of analysis and is 
scored as in conventional ROC analysis, ie, without re­

gard to location within the ROI. Accuracy measures are 
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estimated by averaging across both ROIs and subjects. As 
mentioned previously, observer or algorithm responses to 
quadrants or lobes from the same subject may be corre­
lated. Conventional standard error estimates obtained 
from standard ROC computer programs are not valid be­
cause they assume the responses are independent. Obu­
chowski et al (51) present a formal statistical approach to 
correct for this problem. 

A simple alternative for analyzing ROI data has been 
proposed by Rutter (49). We outline this next because it 
displays the fundamental issue in a simple way. Rutter 
proposed using the bootstrap to obtain standard errors. 
Bootstrap samples are taken at the subject level because 
subjects are the primary sampling unit. When a subject is 
drawn, the entire set of observations for that subject en­
ters that bootstrap sample. The basic principle is that 
bootstrapping should mimic the underlying probability 
mechanism that gave rise to the observed data (52). Thus, 
because subjects were sampled from a population of sub­
jects, as opposed to ROIs being sampled from a popula­
tion of ROIs, the bootstrapping unit is the subject. In this 
way, the subject correctly remains the independent statis­
tical unit, not the ROI. Standard errors and/or confidence 
intervals are obtained from the distribution of accuracy 
statistics that result from the bootstrap process. The ROI 
approach with standard errors computed in this way pro­
vides valid statistical inference. It is reasonable to expect 
that it will offer greater statistical power than the alterna­
tive of ignoring location-specific information. 

Chakraborty et al (53) have criticized the ROI ap­
proach as not adequately resembling the clinical task. 
Multiple false-positives within an ROI are not penalized. 
They also raise questions about the power of the method 
because it is a nonparametric approach and could possibly 
be surpassed if the appropriate parametric treatment could 
be found. Application of the Pepe (31) approach to ROI 
data would offer a more parametric approach than that of 
Obuchowski et al (51) because models of the ROC curve 
could be directly posed (as opposed to models of the 
AUC). The search for the most statistically powerful ap­
proach among those considered here is the subject of cur­
rent investigation. 

THE PROBLEM OF ESTABLISHING TRUTH 

In the previous section we assumed the true status of 
each observation was known with certainty. This is an 
idealization that may not occur in practice. “Truth” may 

be defined in several ways, and the appropriate definition 
will depend on the clinical task. We discuss a few possi­
ble definitions of truth, as well as methods of evaluating 
performance when no truth is available. 

Defining Truth.—Potential sources of “truth” data in­
clude: (1) diagnosis by a panel of experts (but considering
caveats in the next section); (2) follow-up imaging studies 
(eg, higher resolution scan, repeat CT scans at specified 
intervals to assess change in size); (3) pathology; and (4) 
information about cause-of-death. Ideally, pathology data 
would be available for all tissue in the entire lung. Cause-
specific mortality data would also be useful. However, 
there are many practical limitations precluding the avail­
ability of such data. In reality, pathology will not be 
available for all tissue and will likely not even be avail­
able for all nodules included in the database. Mortality 
data may be available after considerable time has passed, 
but will not be available for all subjects in the database. 
Hence, working definitions of “truth” must be given. Such
definitions must be considered within the context of the 
clinical model and must take into account the practical 
consequences of follow-up and treatment. 

In a screening setting in which localization is not of 
primary interest, a true state is defined for each individ­
ual. For practical purposes, “truth” might be defined ac­
cording to whether a recommended diagnostic follow-up 
scan was found to be necessary. If detection of any nod­
ule is of interest, any nodule positively identified at fol-
low-up or by a panel of experts might define the abnor­
mal state for that subject. The normal state then would be 
defined as “no observed nodules” on either the initial or 
follow-up scans or according to the panel. If detection of 
a cancer is of interest, confirmation of nodule status by 
pathology is needed. “No malignancy” might be defined 
as a negative biopsy, no growth of a certain amount over 
a specified time interval, or no nodule present based on a 
follow-up study. We note that the amount of growth for a 
“true-positive” classification and the acceptable time inter­
val should be determined based on reasonable estimates 
of cancer growth rates, which have not been definitively 
established yet. 

In a setting in which localization of each nodule is of 
interest, defining and obtaining “truth” is more compli­
cated. The unit of analysis is no longer unique and will 
depend on the precision with which localization is de­
sired. The unit may be a lobe or region of the lung, as 
opposed to the individual. Definitions of true and false 
positives as described previously may be applied to each 
unit. In this setting, acquisition of “truth” data is more 

difficult. In contrast to screening without localization, 
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where confirmation of any observed nodule is sufficient to
classify the individual as a “true-positive,” authentication 
of the location of each suspicious nodule (or region) is 
needed when localization is of interest. 

Finally, regardless of the definition chosen, clinical 
data to establish “truth” will be missing for some subsets 
of the database. In particular, the “true” status will only 
be available for some nodules in the database because it 
would be unethical to work-up subjects with negative 
scans or with nodules with a low likelihood of malig­
nancy. Verification bias results when missing truth occurs 
only among subjects (nodules/regions of the lung) that 
screen negative. This type of bias is frequently found in 
practice because of the ethical issue when there is no in­
dication of disease. Failure to adjust for this can result in 
significantly biased accuracy estimates. Refer to Begg and 
Greenes (54), Gray et al (55), and Zhou (56) for discus­
sions of verification bias. In the LIDC database, it seems 
more likely that truth will be missing on subsets of both 
negative and positive subjects. For some tasks, truth may 
be missing altogether. In the absence of the most desir­
able type of truth, several proposed alternatives exist, all 
of which are problematic to some degree, as we review 
next. 

Expert Panel as Truth.—The assessment of disease 
status of subjects and images collected by the LIDC will, 
of necessity, depend to a large extent on expert opinion 
until sufficient time has passed for follow-up and pathol­
ogy. Dependence on expert opinion derived from the very 
same images used for the assessment of the imaging sys­
tem or algorithm leads to an additional source of uncer­
tainty that is not present when an independent source of 
“ground truth” is available. Revesz et al (57) reviewed 
this issue in a study of three alternative methods for plain 
chest imaging. They considered four rules for defining 
truth based on a committee of readers. These include ma­
jority rule, consensus, and expert and feedback review. 
They found that, depending on the rule used for arbitrat­
ing truth, any of the three alternative imaging methods 
could be found to surpass the other two, generally with 
statistical significance. This reference has served for sev­
eral decades as a caveat to investigators working in that 
situation. The extent to which this issue affects other set­
tings has not been widely investigated. A sensitivity anal­
ysis to the definition of “truth” may be useful in this re­
gard. 

From a practical point of view, when computer algo­
rithms are being used in the so-called “detection” mode, 

one desired result from the algorithm might be to identify 
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regions in the image that a panel of expert readers would 
identify as “actionable” (ie, something that requires addi­
tional work-up). This task does not intrinsically require an 
independent assessment of the subject or image “truth” 
status. For the present, we merely call attention to Reves 
et al (57) because they indicate that the subjective com­
mittee approach to “truth” will inevitably introduce addi­
tional uncertainty (or noise) into the analysis beyond what 
would be present when gold-standard truth such as fol-
low-up or pathology is available. 

Investigators who use some consensus surrogate for 
“truth” based on an expert panel and wish to declare this 
as known truth to proceed with traditional ROC para­
digms should consider the additional uncertainty and/or 
variability present in their results but not accounted for in 
available software. Some form of resampling of the ex­
pert committee may be useful for this process, although, 
to our knowledge, no such method has been proposed in 
the literature. 

Estimating the Truth from the Data.—There is exten­
sive literature on estimating accuracy measures in the ab­
sence of truth data. The majority of the literature has fo­
cused on binary outcomes, eg, when tests or readers clas­
sify subjects as simply positive or negative. While the 
output of a computer algorithm may be either continuous 
or categorical, there are important lessons to learn from 
the two-category case. We review these methods briefly 
to illustrate some pitfalls. Because many of the references 
pertain to the field of clinical laboratory tests assessment, 
we shall refer to a computer output rating of likelihood of 
disease as the “test result.” 

Sensitivity and specificity estimates without truth.— 
When a test is binary, sensitivity and specificity describe 
diagnostic accuracy. Walter and Irwig (58) discuss a 
methodology for estimating sensitivity and specificity un­
der the assumption of so-called conditional independence. 
Conditional independence assumes that, given the true 
disease status, results from two (or more) tests are inde­
pendent across tests. Stated another way, once the true 
status of a subject is known, knowledge of one test result 
is assumed to provide no information about results of 
other tests. When this condition holds, application of 
three tests is enough to provide estimates of diagnostic 
error. The conditional independence assumption is typi­
cally unrealistic, particularly in our setting, because there 
may be many features of an image (not directly related to 
disease) that can result in correlated tests. Vacek (59) and 
Torrance-Rynard and Walter (60) demonstrate the bias 

that results when conditional independence does not hold. 
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Several models that do not make the conditional inde­
pendence assumption have been proposed. The depen­
dence among test results, or the tendency of multiple test 
results to vary similarly for a given individual, has been 
modeled using Gaussian random-effects (61) or through 
the incorporation of “interaction” terms (62). For an over­
view of these methods, see Hui and Zhou (63) and Albert 
et al (64). While these methods do not make the assump­
tion of conditional independence, they are sensitive to the 
assumed dependence structure. Albert and Dodd (65) 
show that estimates of sensitivity and specificity can be 
biased, even in large samples, when the dependence struc­
ture is misspecified. Further, they note that use of likeli­
hood comparisons to distinguish between different classes 
of models may not identify the appropriate model. Thus, 
it may not be possible to decide which model-based accu­
racy estimates are preferred. We note that although this 
problem was shown in the binary test setting, generaliza­
tions of such models to the continuous test setting could 
suffer similar problems. Sensitivity and specificity repre­
sent one point on the ROC curve, and if bias exists at one 
point because of model misspecification, one must con­
sider the possibility that the entire curve may suffer this 
effect. This effect remains to be investigated. Finally, we 
note that Bayesian approaches to this general problem 
have been proposed (see, for example, Dendukuri and 
Lawrence, (66)). However, these approaches require 
enough experience with the population under study to 
specify prior distributions such as disease prevalence. 

ROC estimation without truth.—Henkelman et al (67) 
investigated the case of estimating the entire ROC curve 
in the absence of truth. They showed that whereas ROC 
analysis in the absence of truth is not possible when one 
is studying a single diagnostic test, it is possible (at least 
in principle) when one has two diagnostic tests that are 
fairly accurate (ROC areas of approximately 0.90). Their 
model assumes that there exists an unknown set of mono­
tonic transformations that converts the distributions of the 
test results to be simultaneously normal. It also takes ad­
vantage of the fact that there is more information for 
solving the estimation problem when the test data are 
available in the full categorical or continuous output 
space than when the test results are binary. In principle, 
more information leads to more efficient estimation. Begg 
and Metz (68) cautioned use of this method and discussed 
the issue of bias resulting from this approach. They argue 
that estimates may be sensitive to the underlying model 

assumptions and that this may be difficult to sort out, 
which is an argument similar to that described in the pre­
vious section. 

Beiden et al (69) reviewed the existing literature on 
the problem of ROC without truth and provided a maxi-
mum-likelihood solution that combines the expectation– 
maximization algorithm with the University of Chicago 
CORROC software (Chicago, IL) (70,71). The approach 
shares the semi-parametric property of the normal-based 
CORROC software, namely, it is not necessary that the 
results for each test be normally distributed, only that the 
test results be transformable to normal distributions 
through a monotonic transformation. A striking result of 
their simulations was the following: approximately 25 
times the number of subjects is required in the ROC-with-
out-truth setting to obtain precision comparable to that 
obtained in the corresponding problem of ROC with truth. 
Whatever the difficulties of assessing diagnostic tests in 
the complete absence of an independent source of truth, 
many of the references cited here indicate that the prob­
lem becomes more well-behaved when the data set with 
missing truth becomes enriched with additional data for 
which the truth state is known, the so-called “partial 
truth” or “verification bias” problems. Refer to references 
(54), (55), and (56) for more information on handling 
such bias. 

Polansky-Kundel agreement measure.—Polanksy et al 
(72–74) have offered an approach based on agreement 
that can be used when truth is not known. Such measures 
are fundamentally different from accuracy measures be­
cause the approach addresses consistency among readers. 
If readers agree, but are wrong in their assessment of the 
true underlying state, an agreement study might give un­
deserved confidence in the readers. 

Polansky et al assume that the imaging cases fall into 
different categories of difficulty. In a four-category ver­
sion, for example, there are easy and difficult normals, 
and easy and difficult abnormals. They find that the four-
category model frequently best fits their data, and that a 
minimum of six readers is required. (A three-category 
model requires a minimum of four readers.) An expecta-
tion–maximization algorithm is used to estimate the levels 
of agreement and the distribution of the four categories. 
A weighted average gives the relative percent agreement 
(RPA). Resampling methods can be used to estimate the 
precision of results. The underlying premise of their ap­
proach is that the RPA is a figure of merit for which a 
larger value is better. Thus, the better of two competing 
computer assists is that which increases the RPA of a 

panel of experts by more. 
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Kundel et al (74) provide an example comparing the 
performance of 10 mammographers unaided and aided by 
a computer assist. In their analysis, they first suppressed 
the truth and estimated the RPA for both conditions. They 
then used the truth and conducted a multiple-reader ROC 
analysis. The range of ROC areas and range of values of 
RPA they found were very similar; however, the correla­
tion across the actual values of the two measures was 
only approximately 0.60. This may reflect the fact that 
ROC and RPA analyses attempt to measure fundamen­
tally different quantities; moreover, the panel in RPA 
analysis intrinsically introduces additional variability as in 
the problem of ROC without truth sketched above. 

At the moment, it seems that the major applications of 
this RPA paradigm might be to problems such as those 
analyzed by Polansky, Kundel, and colleagues, where 
human readers are always in the loop. The application to 
a major problem of interest to eventual users of the LIDC 
database, namely, assessment of agreement of algorithms 
without humans in the loop, has not been attempted so far 
to our knowledge. One could define an algorithm for 
combining the decision of an expert on the “truth com­
mittee” with the output of the computer to obtain a new 
decision which is considered to be from an “augmented 
expert.” The RPA of the unaided experts can then be 
compared with the RPA of the augmented experts. The 
computer algorithm that produces the greatest augmented-
expert RPA would be considered the best among those 
being compared. 

The optimal strategy for choosing numbers of catego­
ries, readers, and algorithms, as well as the interpretation 
and generalizability of the results, are issues that require 
further research. The performance of the augmented ex­
pert will likely depend on the process chosen for combin­
ing the output decisions. As a result, the relative perfor­
mance of the two augmented experts can depend on this 
process. Additionally, the process for combining output 
decisions may be different from the manner in which a 
human observer actually incorporates the CAD informa­
tion. Thus, the relative performance of the “augmented 
experts” may not reflect performance when the CAD 
methods are used by human readers in clinical practice. 

SIZING & POPULATING A DATABASE FOR 
TRAINING AND TESTING OF ALGORITHMS 

The types and number of cases (or images) needed to 
adequately populate a database so that results are general­

izable is an important problem with no straightforward 
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answer. The generalizability of a measure of performance 
is influenced by the extent to which the estimate is near 
the true value in the population of interest (bias) and the 
precision with which the measure is estimated (variance). 
Issues of bias depend not only on the sampling process 
for populating the database but also on how samples are 
used in algorithm training and evaluation. Variability, on 
the other hand, depends largely on the number of avail­
able samples, assuming appropriate sampling is per­
formed. Determining the target size for a database to be 
used for training and evaluating machine classifiers is a 
relatively new issue in the field of medical imaging. In 
the context of statistical learning, Hastie et al (75) state 
that, “it is too difficult to give a general rule on how 
much training data is enough,” noting that it depends on 
both the complexity of the algorithm and on the signal-to-
noise ratio present in the underlying system. The com­
plexity of algorithms developed using the LIDC database 
may vary considerably. Further, the signal-to-noise ratio 
is not known and will depend on the particular goal of an 
algorithm. Therefore, it is difficult to specify a priori how 
much data will be enough. In this section, we review ba­
sic issues relating to bias and discuss a model that incor­
porates the sources of uncertainty when training and eval­
uating algorithms. 

Issues of Bias.—Ensuring an unbiased estimate of the 
performance measure of interest is fundamental. A data­
base that is adequately sized but represents a biased sam­
ple would result in the “often wrong but never in doubt 
phenomenon.” Therefore, a clear definition of the popula­
tion of interest and the collection of a representative sam­
ple from this population are critical. Consideration should 
be given to subject characteristics as well as the technical 
parameters of image acquisition. A random sample of 
cases from this population must be taken to avoid the 
introduction of systematic biases. Additionally, unbiased 
methods of estimation should be chosen. Biased estima­
tion may result, for example, by using sensitivity esti­
mates from models developed for situations in which 
truth information is not available, as discussed in a previ­
ous section. 

Once a representative sample has been collected, the 
manner in which data will be used to train and evaluate 
algorithms must be considered. In the classic paradigm, 
data are divided into two sets: one to train the algorithm 
and one to test its performance. Two separate datasets are 
needed because the set for training tends to provide an 
overly optimistic estimate of algorithm performance, par­

ticularly as algorithm complexity increases. The test set, 
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which is assumed to be a random sample from the popu­
lation of interest, is needed to produce an unbiased esti­
mate of the mean performance of an algorithm. When 
comparing different algorithms, division of the data into 
three sets (training, validation, and testing) is recom­
mended (75). The validation data are used to select the 
superior algorithm, while the data for testing are used to 
evaluate the performance of the chosen algorithm. In the 
discussions that follow, we assume that the images are 
divided into training and testing sets, although some users 
of the LIDC database may wish to divide the data into 
the three sets described above. Methods that do not re­
quire separation of the training and testing sets, such as 
cross-validation and bootstrap, have been proposed (75). 
However, whether these methods are adequate replace­
ments for the classic paradigm is still a subject of re­
search. 

Finally, it is useful to recall the difference between a 
laboratory “stress test” and a clinical “field test” of an 
imaging or CAD modality (76). A stress test is designed 
to study differences between competing imaging systems 
(or algorithms) using cases selected to challenge those 
differences, such as a higher concentration of positive 
cases or “subtle positive” cases than are found in the gen­
eral population. This type of test is therefore a powerful 
investigative tool but ignores the potential biases involved 
in case selection (77). A field test, on the other hand, at­
tempts to study systems in their most natural and repre­
sentative habitat with minimal biases. The expense of a 
field test can be enormous compared with that of a stress 
test, often with ambiguous results because the effect of 
the technology may be overwhelmed by the multiple 
sources of variability in the experiment. Even a stress 
test, however, must consider the degree to which the 
cases represent the target populations. Arguments can be 
made both in support of stress tests and in support of 
field tests, depending on the available resources and the 
desired generalizability of the results. Although generally 
similar in nature, a more detailed discussion of the topic 
that considers inclusion of observers as an integral to the 
diagnostic system is beyond the scope of this article. 

Multivariate nature of the variance problem.—We as­
sume that the true status of all subjects and images is 
known from a source independent of the images them­
selves. In addition, we assume that the investigators will 
sample the specified target population without bias. The 
task of sizing the database is still nontrivial because the 
problem is multivariate. In fact, the general problem in 

statistical pattern recognition (SPR), where one or more 
machine algorithms are trained with training samples and 
then tested on a finite sample of test cases (78), is iso­
morphic to the multivariate MRMC ROC paradigm that 
has become the most common contemporary approach to 
assessment in the field of medical imaging and CAD 
(46,47,78–85). 

The MRMC assessment paradigm in conventional 
medical imaging studies addresses the fact that there is 
variability from the range of reader skills in the reader 
population of interest and in the finite sample of readers 
available for a given study; there is also variability from 
the range of case difficulty in the population of subjects 
and in the finite sample of subjects available for the 
study. Further variability is introduced by the interaction 
of these effects with each other and with the modalities 
under comparison. A priori, it is not obvious which (if 
any) of these effects will dominate the overall uncertainty 
in a study or the extent to which any of them will mask 
the effect that one desires to measure. The MRMC para­
digm quantitatively accounts for all of these sources of 
variability. The resulting estimates of mean performance 
and their uncertainty are thus said to generalize to a pop­
ulation of readers as well as to a population of cases. A 
parallel structure exists in the variability that arises from 
the finite training set and the finite test set in the SPR 
problem; this structure can be understood in terms of the 
formal correspondence between SPR and imaging that we 
illustrate next. 

Isomorphism between imaging and pattern recognition 
paradigms.—It is straightforward to show the existence of 
an isomorphism (or complete one-to-one correspondence) 
between the problem of assessing and comparing diagnos­
tic imaging systems in the presence of multiple random 
effects (eg, cases and readers) and that of comparing 
computer algorithms in the SPR problem. A training set 
in SPR corresponds to a reader in imaging; in fact, one 
may think of a radiologist as someone who has been 
trained with a particular finite sample of cases that may 
be characterized by its particular range of case difficulty. 
So a finite training set in SPR brings variability to the 
SPR problem just as a reader with finite training and ex­
perience brings variability to the MRMC imaging prob­
lem. Likewise, a finite test set in SPR corresponds to the 
finite subject case sample in medical imaging. Finally, 
competing imaging modalities in medical imaging corre­
spond to competing algorithms in the SPR problem. 

At the outset, one might expect at least two contribu­
tors to the uncertainty analysis in the MRMC medical 

imaging paradigm, namely, cases and readers. However, a 
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formal analysis of the MRMC problem in medical imag­
ing requires six components of variance that contribute to 
measurement uncertainty in different ways depending on 
the task. The components are: a pure case component (c), 
a pure reader component (r), a reader-by-case component 
(rc), and three corresponding interactions with modalities. 
All six components contribute to the uncertainty (error 
bars) when the performance of either of two competing 
modalities is of interest. Only the last three components 
contribute to the uncertainty when the difference in per­
formance across two competing modalities is of interest. 

Similarly, in the SPR detection or discrimination prob­
lem, we speak of the pure test-set component (ts), the 
pure training-set component (tr), the training-by-test-set 
component (tr x ts), and three corresponding interactions 
with the algorithms. The isomorphism is thus c7ts, r7tr, 
modality7algorithm, etc. Again, all six components con­
tribute to the uncertainty in estimates of performance of 
either of two competing algorithms, and only the last 
three components contribute to the uncertainty in the dif­
ference in performance across two competing algorithms. 
More details for CAD systems are given in reference 
(78). 

In medical imaging, the sizing of a trial intended to 
reflect the uncertainty caused by both readers and cases is 
not a trivial task because of this multivariate structure. A 
pilot study and/or comparison with the experience of oth­
ers who have studied the task and populations of interest 
is necessary. Sizing is a function of the imaging task it­
self and also of the range of case difficulty selected for 
the study, the range of reader skill sampled, and their cor­
relations across the modalities under comparison; in other 
words, sizing is a function of the strengths of the variance 
components listed above. As documented earlier, it is not 
obvious a priori which components will dominate the un­
certainty analysis. A parallel situation holds for the SPR 
problem, according to the isomorphism we have outlined 
here. It will not be obvious a priori how the finite training 
set and finite test set sources of variability will contribute 
to the overall uncertainty analysis when computer-assist 
algorithms are being compared. 

It is reasonable to assume that the training of an algo­
rithm eventually will reach a mature (or trained) level 
high on its learning curve. As the size of the training data 
set gets large, each independent observation contributes 
less and less (in relative terms) to the training of the algo­
rithm. At some point, an additional observation contrib­
utes little “information” to the training of the algorithm so

that one might expect little uncertainty in the algorithm, 
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in terms of either bias because of the finite size of the 
training sample (86,87) or variance resulting from the 
same limitation. When this level is achieved, one has ob­
tained the appropriate number of cases needed for train­
ing, and algorithm testing may proceed. Without much 
prior experience, it is difficult to know when that point is 
being approached. Hence, early in the developmental 
stages of computer-assist algorithms, it is necessary to 
consider that the finite training sample contributes to un­
certainty in algorithm assessment as well as the finite test 
sample and their respective interactions, as discussed pre­
viously. Moreover, the dependencies of these effects on 
training and test sample numbers are not symmetric (84), 
therefore no simple rules for estimating target numbers 
are yet known. 

In the absence of prior experience with the task and 
populations of interest, a pilot study can be conducted 
and analyzed within the above framework to obtain esti­
mates of the strengths of the variance components 
(46,78–81). One can then use the variance observed in 
the pilot study, together with estimates of the components 
and some basic rules for variances scaling, to estimate the 
size of training sets and the size of independent test sets 
required to obtain the uncertainties or error bars desired 
by users of the final database. A different way to state 
these concepts is the following. The components of vari­
ance quantify the variability of training and test set diffi­
culty in the database as seen through the competing algo­
rithms and estimated with the finite samples available, 
which is the information required for a quantitative esti­
mate of a target size for the database. A pilot study 
should be sufficiently sized to obtain reliable estimates of 
the variance components. One advantage of the approach 
of Beiden et al (81–83) is that it also provides estimates 
of the uncertainties associated with the variance compo­
nents estimates themselves (83). If the resulting uncertain­
ties are large, a corresponding safety factor for the target 
size of the database will be necessary. Sizing the pilot 
study itself is usually an exercise dominated by practical 
realities and the experiences of the investigators. Again, 
we emphasize that the entire discussion of variability here 
assumes that the investigators are sampling the specified 
target population without bias. 

Components of variance.—In Figure 1, we provide a 
sketch of the process of taking a multiple-reader, multi-
ple-case, multiple-modality data set and decomposing it 
into the components of variance described earlier. An 
attractive feature of the process exhibited in this figure is 

that any of the assessment paradigms discussed previously 
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Figure 1. Fundamental framework for multiple-reader (MR), mul-
tiple-case (MC) data. The black box may contain any accuracy 
measure such as Se, Sp, AUC, partial AUC, or corresponding 
summary measures of location-specific ROC paradigms. When 
truth is unavailable, the ROC-without-truth or RPA paradigms may
be used to replace the ROC measures. 

can be swapped into the “black box” to replace the con­
ventional ROC paradigm. For example, any of the loca-
tion-specific versions of the ROC paradigm may replace 
the conventional ROC one (software available at http:// 
www.radiology.arizona.edu/krupinski/mips/rocprog.html). 
In the absence of truth, the ROC-without-truth paradigm 
or the Polansky-Kundel RPA paradigm may replace the 
conventional ROC paradigm. In any case, the six compo­
nents of variance may be obtained via the Beiden et al 
(78–81) approach (82) and used to appreciate the relative 
contributions of each of these to the resulting uncertainty 
or error bars. Once the variances have been obtained, they
may also be used for sizing a larger trial from the results 
of a pilot study. 

SUMMARY AND CONCLUSIONS 

Prospective planning of a database such as the LIDC 
database requires a reasonable understanding of its poten­
tial applications. LIDC planning is complicated by issues 
specific to lung cancer screening and diagnosis, such as 
the presence of multiple lesions that radiologists may 
wish to localize. In cases in which localization within a 
region (eg, a lobe) is sufficient, an ROI approach as de­

scribed by Obuchowski et al (50) is valid. However, if 
image-guided therapies become a reality, more precise 
nodule localization will become critical. Location-specific 
techniques such as AFROC (41) offer alternatives, al­
though they have noted limitations. 

An additional complication encountered is the diffi­
culty of obtaining “truth”. There is no substitute for gold-
standard verification of diagnosis. Methods proposed for 
evaluating performance without “truth” have limitations. 
Truth will be available only on some subsets within the 
database. The lack of a verified diagnosis on all cases in 
the database raises the issue of verification bias. Without 
pathologic truth, consensus by a panel of expert radiolo­
gists may be the best source of “truth” data, which may 
introduce further uncertainty beyond that in the truth-
known case. Investigators might use estimation techniques 
to attempt to fit the truth and then proceed with classical 
assessment paradigms, but such an approach can be mis­
leading. Alternatively, they might use RPA, with and 
without the computer. Each of these approaches is prob­
lematic and thus requires further investigation to under­
stand its quantitative limitations. 

For a given application, the number of images nec­
essary to adequately power the database is complex as 
it depends on the task, the complexity of the algorithm 
and multiple sources of variability. We reviewed im­
portant considerations about bias and discussed the 
variability associated with training and testing datasets. 
An isomorphism between the MRMC paradigm in im­
aging provides a model to account for the sources of 
variability. 

In summary, we have given a brief review of some 
of the issues that have been discussed by the LIDC in 
connection with assessment methods that users of the 
database may wish to consider and that the LIDC itself 
must consider as it moves forward with the creation of 
a database resource for the medical imaging research 
community. The LIDC is actively engaged in further 
understanding the complexities of the statistical issues 
discussed here and the manner in which these issues 
will impact the eventual utility of the database. This 
review is meant only as a point of departure for further 
discussion by investigators; it is far from a complete 
treatment of this rich and evolving field. More specifi­
cally, it is meant to be descriptive, not prescriptive. We
hope that the existence of the LIDC database will pro­
vide opportunities for investigators to push to new lev­
els the frontiers of methodological issues and statistical 

solutions. 
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